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ABSTRACT: Introducing self-assembly strategies into the construction of catalysts has been proven to have great advantages in
asymmetric catalysis. We constructed two chiral metalla-triangles by highly efficient coordination-driven self-assembly from a chiral
3,3′-dipyridyl-substituted BINOL donor. They were successfully applied in asymmetric conjugate addition of a series of α,β-
unsaturated ketones with trans-styrylboronic acids. The use of these metalla-triangles as supramolecular catalysts is obviously
conducive to the enhancement of catalytic activity and stereoselectivity in the presented addition reactions. Under induction of the
chiral metalla-triangles, an array of α,β-enones were converted to chiral γ,δ-unsaturated ketones in medium to quantitative yields
(40�98%) with high enantioselectivities (87�96% ee).

In the past two decades, supramolecular catalysis has
attracted growing attention because of the great advantages

of introducing self-assembly strategies into the construction of
catalysts.1 The dynamic and reversible properties of supra-
molecular interactions make it much easier to fabricate
enzyme-mimicking catalysts and to establish catalyst libraries,
which are beneficial to the achievement of unexpected catalytic
activity and selectivity.2 A variety of artificial supramolecular
catalysts have been prepared on the basis of different
recognition motifs,1,2 such as host�guest complexations,3
metal�ligand interactions,1g,4 hydrogen bonds,5 and hydro-
phobic effects.6 However, there are only few examples of chiral
supramolecular catalysts, and an even smaller number have
high stereoselectivity in the application of asymmetric
catalysis.2

On the other hand, along with the rapid growth of
coordination-driven self-assembly (CDSA), plenty of discrete
metalla-supramolecules with well-defined shapes and sizes have
been successfully prepared.7 A wide range of metals and
ligands have been utilized to form supramolecular coordination
complexes (SCCs) that not only exhibit interesting topological
structures but also have found numerous applications in
chemical sensing,8 host�guest chemisty,9 crystalline sponges,10

artificial light harvesting,11 separation,12 stimuli-responsive
materials,13 biomedicine,14 and so on. The high efficiency of
CDSA also makes it a powerful method to construct chiral self-
assemblies.15,16 A few chiral platinum-based SCCs have been
successively synthesized since the first report by Stang and
Olenyuk in 1996.16a Recently, a platinum-based chiral
tetrahedral cage was synthesized and used to catalyze the
Michael addition of nitrostyrene derivatives with indole.16e

However, no enantioselectivity was observed because the chiral
ligands of the cage were located at peripheral positions.16e We
speculated that incorporation of a chiral catalyst into the center
of a conformationally rigid metallacycle or metallacage would
lead to an effective chiral supramolecular catalyst with well-

defined enzymelike cavity. As the catalytic centers would be in
the confined space of the cavity and tightly surrounded by
several chiral building blocks, it can be deduced that the
induced asymmetric reaction would be better than that
catalyzed by the nonassembled catalyst.

1,1′-Binaphthol (BINOL, 1) has become a widely used
chiral ligand since its first application in an asymmetric
reaction by Noyori et al. in 1979.17 In recent decades,
numerous effective catalysts with the binaphthyl core structure
have been successfully utilized in various asymmetric catalytic
reactions,18 especially with the 3,3′-functionalized BINOL
derivatives.19,20 To test our hypothesis, we designed and
synthesized chiral BINOL-incorporated metallacycles by
CDSA and applied these metallacycles in catalyzing the
asymmetric addition of styrylboronic acids to α,β-enones.
Obvious enhancements of both the activity and stereo-
selectivity were achieved when the chiral BINOL-incorporated
metallacycles were used as the catalysts.

As shown in Scheme 1, the 3,3′-dipyridyl-substituted chiral
BINOL donor (S)-5 was first synthesized from commercially
available (S)-1 in four steps. After protection by chloromethyl
methyl ether, (S)-2 was iodinated to give 3,3′-diiodo-2,2′-
bis(methoxymethoxy)-1,1′-binaphthalene ((S)-3) in 72%
yield. Suzuki cross-coupling of (S)-3 with 4-pyridineboronic
acid pinacol ester and deprotection in hydrochloric acid
furnished the target bidentate BINOL donor (S)-5 in 52%
overall yield from (S)-1. The prepared (S)-5 was proven to be
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enantiometrically pure by using chiral HPLC analysis (Figure
S10).

Two-component CDSA was then performed by stirring the
ligand (S)-5 with the 180° Pt-based acceptor 6a or 6b in a 1:1
molar ratio to produce the two homochiral metallacycles (S)-

7a and (S)-7b in quantitative yields (Scheme 2). 31P{1H} and
1H NMR spectroscopy of the self-assemblies supported the
formation of single discrete chiral metallacycles with highly
symmetric structures (Figures 1 and 2). The 31P{1H} NMR
spectra of both (S)-7a (Figures 1b and S14) and (S)-7b
(Figures 1c and S19) displayed a single peak with two
concomitant 195Pt satellites, consistent with the homoligated
Pt�N coordination environment. After the formation of the
two chiral metallacycles, the signals in the 31P{1H} NMR
spectra of (S)-7a and (S)-7b were shifted upfield from those of
the starting platinum acceptor 6a and 6b by approximately
5.52 ppm (Figure 1b vs Figure 1a) and 5.65 ppm (Figure 1c vs
Figure 1d), respectively.

By investigation of the 1H�1H COSY spectra of (S)-7a
(Figure S13), (S)-7b (Figure S18), and (S)-5 (Figure S6), all
of the proton peaks were assigned clearly. Readily apparent
shifts of the peaks found in the 1H NMR spectra of (S)-7a
(Figures 2b and S12) and (S)-7b (Figures 2d and S17) were
also observed compared with their analogues in the 1H NMR
spectra of 6a (Figure 2a), 6b (Figure 2e), and (S)-5 (Figure
2c), respectively. Upon the formation of (S)-7a and (S)-7b,
not only the aromatic protons of (S)-5 shifted downfield,
especially the ones close to the platinum, like H1, H2, and H3,
but also the hydroxy proton H8 shifted downfield significantly.
Simultaneously, the signals for H9 of 6a and H10, H11 of 6b
shifted downfield after the exchange of ligands. Circular
dichroism (CD) spectroscopy explicitly affirmed the chirality
of metallacycles (S)-7a and (S)-7b (Figure S16 and S21).

The self-assembly stoichiometry of the chiral metallacycles
was clearly determined by electrospray ionization mass
spectrometry (ESI-MS). The main peaks in the ESI mass
spectra of (S)-7a and (S)-7b all supported the formation of [3
+ 3] triangular structures, including the peak at m/z 1390.7892
attributed to [(S)-7a � 4HOTf � 2OTf + K]3+ (Figure S15)
and the peak at m/z 1566.4625 assigned to [(S)-7b � 2HOTf
� 2OTf + K]3+ (Figure S20). These peaks are isotopically
resolved and agree very well with their calculated theoretical
distributions. No peaks were observed from self-assemblies
with other stoichiometries.

Scheme 1. Synthesis of Chiral BINOL Derivative (S)-5a

aReagents and conditions: (a) NaH, chloromethyl methyl ether,
THF, 90% yield; (b) I2, n-BuLi THF, �78 °C, 72% yield; (c) 4-
pyridineboronic acid pinacol ester, Pd2(dba)3, K3PO4, tricyclohex-
ylphosphine, H2O/1,4-dioxane, 100 °C, 89% yield; (d) HCl, H2O,
90% yield.

Scheme 2. Self-Assembly of the Chiral Metalla-triangles (S)-
7a and (S)-7b

Figure 1. 31P{1H} NMR (202 MHz, DMSO-d6, 22 °C) spectra of (a)
6a, (b) (S)-7a, (c) (S)-7b, and (d) 6b.

Figure 2. Partial 1H NMR (500 MHz, DMSO-d6, 22 °C) spectra of
(a) 6a, (b) (S)-7a, (c) (S)-5, (d) (S)-7b, and (e) 6b.
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We then used (S)-7a or (S)-7b as the catalyst for the
asymmetric conjugate addition of chalcone (8a) with trans-
styrylboronic acid (9a). The preliminary attempt of the
reaction in CH3CN at reflux with 30 mol % Mg(OtBu)2 as
the additive (Table 1, entry 1) showed that (S)-7a is an

effective catalyst for this asymmetric addition, delivering the
product 10a in 38% conversion with 89% ee. The effect of the
solvent on the reaction was then investigated, which showed
that this catalyst system is strongly solvent-dependent. The
reaction had almost no activity in DMF (entry 2) or
dichloromethane (entry 3), while 50% conversion and 77%
ee were achieved in toluene (entry 4). Considering the
catalytic efficiency and the solubility of (S)-7a, acetonitrile was
used as the solvent for further optimization. A variety of
magnesium salts, including anhydrous Mg(OtBu)2, MgSO4,
MgCl2, MgBr2, and Mg(OEt)2, were screened afterward
(entries 1 and 5�8). Medium conversions (35�54%) were
obtained, and the reaction with anhydrous Mg(OtBu)2 gave
the highest enantioselectivity (89% ee). Therefore, Mg(OtBu)2
was selected as the final additive.

Next, we optimized the concentration of the substrate, the
amount of Mg(OtBu)2, the amount of molecular sieves (MS),
the reaction time, and the metalla-triangle catalyst. As shown in
Table 2 (entries 1 and 2), the conversion of 8a increased from
38% to 70% when the concentration of 8a was increased from
0.05 to 0.1 M (Table 1, entry 1 vs Table 2, entries 1 and 2).
This concentration dependence might be caused by the
stronger supramolecular interactions between the reactants and
the metallacycle catalyst as their concentrations increase. When
the amount of Mg(OtBu)2 was increased from 30 to 45 mol %,
the addition product 10a was released in 91% conversion with
94% ee (Table 2, entry 3). Nonetheless, further enhancement
of the amount of Mg(OtBu)2 to 67 mol % (entry 4) as well as
no additive (entry 5) led to much lower conversions. Entries 3,
6, and 7 showed that the dosage of molecular sieves could
influence the reactivity but not the enantioselectivity. The best
ratio was fixed at 16 mg of molecular sieves versus 0.03 mmol
of chalcone. We presume that too much additive may reduce

the solubility of the reactants and catalyst and affect the
molecular collisions, although the presence of Mg(OtBu)2 and
molecular sieves can accelerate the reaction. The conversion
increased from 46% to 91% when the reaction time was
increased from 24 to 40 h (entry 3 vs entries 8 and 9), while
further extension of the reaction time to 48 h did not result in
obvious improvement of either conversion or enantioselectivity
(entry 10). A lesser amount of the chiral catalyst (S)-7a caused
significant decreases in both reactivity and enantioselectivity
(entries 11 and 12 vs entry 3). Comparatively, the reaction
with the larger chiral triangle (S)-7b as the catalyst afforded
similar enantioselectivity but showed slightly lower catalytic
ability (entry 13 vs entry 3), while the BINOL ligand (S)-5
gave only 82% conversion with 76% ee (entry 14). Under the
same conditions, the use of 45 mol % (S)-3,3′-dibromo-1,1′-bi-
2,2′-naphthol ((S)-11), a superior catalyst previously reported
for the asymmetric addition of organoboronates to α,β-
enones20a and the addition of indoles to α,β-enones,20b

provided a quantitative conversion but lower enantioselectivity
(84% ee) (entry 15). These results indicate that the catalysts
incorporated in the two-dimensional cavity of metallacycles are
propitious for the asymmetric reaction.

To illustrate the generality of the catalyst system, additions
of a series of α,β-unsaturated ketones were carried out under
the optimized conditions (Scheme 3). When R1 on 8 is methyl,
yields of the addition products are lower (40�65%) than the
ones with aromatic groups (50�98%). When the R2 groups are
flexible alkyl chains (8b and 8c), medium yields and a
relatively lower enantioselectivity of 87% ee were achieved,
even with a longer reaction time (72 h). Nonetheless, addition

Table 1. E�ects of Additive and Solvent on the Asymmetric
Conjugate Addition of Chalcone (8a) Catalyzed by (S)-7aa

entry additive solvent conv. (%)b ee (%)c

1 Mg(OtBu)2 CH3CN 38 89
2 Mg(OtBu)2 DMF trace n.dd

3 Mg(OtBu)2 CH2Cl2 5 n.dd

4 Mg(OtBu)2 toluene 50 77
5 MgSO4 CH3CN 54 82
6 MgCl2 CH3CN 43 83
7 MgBr2 CH3CN 38 82
8 Mg(OEt)2 CH3CN 35 86

aReaction conditions: 0.03 mmol of 8a, 0.036 mmol of 9a, 0.0045
mmol of (S)-7a, concentration of 8a = 0.05 M, 4 Å MS (16 mg),
reaction time = 40 h. bDetermined by integration of the product
signals in 1H NMR spectra. cDetermined by HPLC analysis. dNot
determined.

Table 2. Optimization of Other Conditions for the
Asymmetric Addition Reactiona

entry catalyst mol % Mg(OtBu)2 time (h) conv. (%)b ee (%)c

1d (S)-7a 30 40 48 91
2 (S)-7a 30 40 70 90
3 (S)-7a 45 40 91 94
4 (S)-7a 67 40 63 93
5 (S)-7a 0 40 63 91

6e (S)-7a 45 40 81 95
7f (S)-7a 45 40 75 94
8 (S)-7a 45 24 46 92
9 (S)-7a 45 36 82 95

10 (S)-7a 45 48 90 94
11g (S)-7a 45 40 53 54
12h (S)-7a 45 40 73 85
13 (S)-7b 45 40 87 94
14i (S)-5 45 40 82 76
15j (S)-11 45 40 99 84

aReaction conditions: 0.03 mmol of 8a, 0.036 mmol of 9a, 0.0045
mmol of catalyst, concentration of 8a = 0.1 M, 4 Å MS (16 mg).
bDetermined by integration of product signals in the 1H NMR
spectra. cDetermined by HPLC analysis. dConcentration of 8a = 0.08
M. e6 mg of 4 Å MS. f26 mg of 4 Å MS. g0.0015 mmol of (S)-7a.
h0.003 mmol of (S)-7a. i0.0135 mmol of (S)-5. j0.0135 mmol of (S)-
11.
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of substrates with aromatic or heteroaromatic R2 groups all
gave higher enantioselectivities (94�96% ee for 10d�h, 10o,
and 10p) regardless of the substituents on the aromatics. For
the substituted chalcones, the adducts 10i�n were obtained
with 90�96% ee in up to 98% yield. Para substitution on the
phenyl of R1 with electron-donating groups slightly reduced
the enantioselectivity (90% ee for 10i and 91% ee for 10j),
while the presence of an electron-withdrawing group or no
substituent on the phenyl of R1 provided higher enantiose-
lectivities (94�96% ee; 10k�n). The substituents on the
phenyl of R2 had no obvious effect on the enantioselectivity
(10l�n); nevertheless, the existence of an electron-with-
drawing chloride on the phenyl of R2 resulted in a much lower
yield of 50% (10n). The substituents of R3 on the phenyl of
the styrylboronic acid have almost no influence on either the
reactivity or enantioselectivity (10q, 10r). The results are
significantly better than those previously reported for the
enantioselective addition of boronic acids to α,β-enones with
similar substrate structures catalyzed by O-monoacyltartaric

acids (68�88% ee)21a and are comparable to the data obtained
for catalysis using an unusual chiral biphenol organocatalyst
bearing a complicated tetraphenylene scaffold (86�98%
ee).21b

In summary, we have described the highly efficient
construction of two chiral metalla-triangles by coordination-
driven self-assembly of a chiral 3,3′-dipyridyl-substituted
BINOL donor with two 180° Pt-based acceptors. These two
chiral SCCs were characterized by 1H, 31P{1H}, and 1H�1H
COSY NMR, ESI-MS, and CD analyses. They were
successfully applied in the asymmetric conjugate addition of
a wide assortment of α,β-enones with styrylboronic acids to
furnish γ,δ-unsaturated ketones in 40�98% yield with 87�96%
ee. The results showed that the formation of a metallacycle
with multiple catalytic sites and suitable chiral cavity is
important for the enhancement of activity and stereoselectivity
in the reaction. The present studies not only provide
convenient pathways to build up new chiral supramolecular
macrocycles with interesting structures but also offer an
effective strategy for the construction of chiral supramolecular
catalysts.
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